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C
ABSTRACT

?

The paper presents a new algorithm to determine the attitude using only

magnetometer data under the following conditions: (1) internal torques

are known and (2) external torques are negligible. Torque-free rotation of

a spacecraft in thruster firing acquisition phase and its magnetic despin in

the B-dot mode give typical examples of such situations. A simple analyti-

cal formula has been derived in the limiting case of a spacecraft rotating

with constant angular velocity. The formula has been tested using low-

frequency telemetry data for the Earth Radiation Budget Satellite (ERBS)

under normal conditions. Observed small oscillations of body-fixed com-

ponents of the angular velocity vector near their mean values result in

relatively minor errors of approximately 5 degrees. More significant

errors come from processing digital magnetometer data. Higher resolu-

tion of digitized magnetometer measurements would significantly improve

the accuracy of this deterministic scheme. Tests of the general version of

the developed algorithm for a free-rotating spacecraft and for the B-dot

mode are in progress.
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1. INTRODUCTION

The idea of developing an attitude determination system using only three-axis magne-

tometer measurements has been attracting attention for many years, despite its relatively

low accuracy. The light weight and low cost of such a system are usually considered its

main advantages. For a spacecraft in low-attitude Earth orbit, Kalman filtering has been

proven to be an effective tool to derive the attitude from magnetometer measurements

with a 2-degree (deg) accuracy (see References 1 and 2).

This paper is intended to develop an attitude determination algorithm using only magne-

tometer measurements under contingency conditions such as loss of attitude control of

spacecraft. Due to high-speed rotation of a spacecraft, all other sensors, such as Sun

sensors or star trackers, would become unreliable. Our research was inspired by studies

of the attitude motion of the Earth Radiation Budget Satellite (ERBS) during the July 2,

1987, control anomaly. An analysis of the playback data (see Reference 3), revealed that

the stimulation of the Sun sensor by bright Earth during one of the real-time passes led to

an initially incorrect conclusion about the spacecraft orientation in the post G-Rate mode.

Although the attitude control system does not utilize gyro measurements under normal

conditions, our analysis showed that these measurements can be effectively coupled with

the magnetometer data to determine the attitude when angular rates are lower than the

saturation limits on gyro output. Nevertheless, to give a worst case, we also assume a

gyro failure either because of exceeding the telemetry limit or like that recently experi-

enced by the Cosmic Background Explorer (COBE).

Therefore, the problem is to determine the attitude using only magnetometer data with no

a priori knowledge of the spacecraft orientation. The latter requirement makes this re-

search essentially different from the previous studies of attitude determination from mag-

netometer-only data via the Kalman filtering (see References 1 and 2). This is because

the dynamical equations must first be linearized near their approximate solution. The
solution was assumed known in References 1 and 2, which discussed a spacecraft under

normal conditions, whereas this paper is focused on development of a deterministic algo-

rithm for making the first guess in a situation when the attitude of the spacecraft deviates

substantially from the expectations. After an approximate solution is found through a

deterministic algorithm, it could be improved using the filtering technique (see Refer-

ences 1 and 2).

We have identified the two most typical attitude acquisition phases likely to be encoun-

tered under the contingency conditions:

(1) No thruster firing acquisition phase (angular rates <0.2 degree/second (deg/sec))

(2) Thruster firing acquisition phase (spinning rates within 10-50 deg/sec)
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Due to relatively small angular rates in phase1, the control systemcan significantly affect
the spacecraft tumbling and, asa result, severalsituations should be studied. The follow-
ing operational modes have been identified as the most representative choices:

(la) Magnetic despin of a spacecraft (the B-dot mode) (seeReferences4 and 5)

(lb) Control system turned-off

(lc) A "blind" control systemrandomly rocking the spacecraft

(ld) Stabilization of the spacecraft by means of nutation damping

For Phase 2, the control system is expectedto play a relatively minor role, and, conse-
quently, spacecraft tumbling is expectedto bepredominantly governed by the torque-free
Euler equations.

The paper presents a new deterministic algorithm, which works under the conditions that
(1) internal torques are known and (2) external torques are negligible. Environmental
torques are expected to be negligible either becauseof large angular momentum of the
spacecraft or when comparedwith internal torques. Thruster firing acquisition phaseand
the B-dot mode give typical examplesof suchsituations. Also, the algorithm can be used
(at least in principle) to determine the attitude of a spacecraft governed by a "blind"
control system (operational mode (lc)), when momentum wheel and scanwheel speeds
and electromagnetic dipole moments are available from the telemetry data.

2. ANGULAR RATE UNCERTAINTY CIRCLE (ARUC)

Let t3A and I3R be the vectors of geomagnetic field measured in the body-fixed and refer-

ence frames, respectively:

A t3R = 13A (2-1a)

The time derivatives I_A and I_R of two vectors are connected by the relation

g ]_R = ]_A + _A x BA (2-1b)

where _A is the angular velocity vector referred to the body-fixed frame and the attitude

matrix A represents the orientation of one frame with respect to another. The vector t_A

can be computed from two sequential magnetometer measurements 13A and t3A by us-

ing the finite-difference approximation. The vector t3R, like the vector fir itself, is found

from the geomagnetic field model, assuming that the position of the spacecraft in space is
known.

If the angular velocity vector _A can be extracted from gyro measurements, Equa-

tions (2-1a) and (2-1b) can be directly used to determine the attitude via the TR_IA_D
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algorithm (see Reference 6), which implements the so-called "algebraic method" of three-

axis attitude determination (see Reference 7).

If only magnetometer measurements are used, the set of Equations (2-1a), (2-1b) is in-

complete. In particular, the projection of the angular velocity vector (5A on geomagnetic

field can be arbitrarily changed without violating Equation (2-1b). It is shown below that

the projection of (_A on the plane perpendicular to the vector /_A is restricted by Equa-

tions (2-1a), (2-1b) to a circle, referred to below as the Angular Rate Uncertainty Circle

(ARUC). To determine the attitude, it is necessary to know the position of the latter

projection on the ARUC (i.e., the angle q_ in Figure 1, explained below). This requires

the third sequential magnetometer measurement, which makes it possible to compute the

second derivative of the vector t3A with respect to time. The algorithm that allows one to

unambiguously determine both the attitude matrix A and the angular velocity error (5A is

outlined in Section 3.

Figure 1. Angular Rate Uncertainty Circle (ARUC)

This section is focused on the information that can be extracted only from two sequential

magnetometer measurements, giving rise to the particular ARUC. Calculating the square

of magnitude of the vectors in the left- and right-hand sides of Equation (2-1) to exclude

the attitude matrix, we come to the equation

=- I AI = × + (]3Ax 13A) (2-2)
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which contains only the projection (5A of the angular velocity vector t5A on the plane

perpendicular to the geomagnetic field. (The vector (_A is referred to below as the

transverse angular velocity.) Denoting the projections of t5 A on the mutually perpendicu-
lar vectors,

(2-3)

by o01, o)2, o03, one can easily see that the projections (.02 and o)3 lie on the circle:

(fo02 + "_'A)2 + f2 0)2 = )]2R (2-4)

(See Figure 1). The parameters f, )]'A, and 2R are defined as follows:

f - IB_l/Ig_l,XA- a sin_A, 2R -- sin_R, (2-5)

where

a-= lI?'l/Ig_l (2-6)

and _0K (K = A, R) is the angle between the vectors gK and I_K (K = A, R). The center of

the ARUC always lies in the left semiplane of the o0z o03 plane. Depending on the value

of the parameter a, the ARUC either lies completely in this semiplane (ira > 1) or

crosses the ordinate at two points (ifa < 1). For a = 1, the ARUC is tangent to the ordi-

nate at the origin, and this is the only case when zero angular velocity is among the

allowed solutions; otherwise, the spacecraft must rotate. The projection of angular veloc-

ity along the vector t_A remains completely unrestricted unless the second derivatives of

the geomagnetic field with respect to time are taken into account.

By analogy with the TRIAD algorithm (see Reference 6), we introduce three normalized
reference vectors:

15_:i_R, _: t_ x gR/(IgRIsin,p_0, 0_: 1_ x O_ (2-7)

The crucial difference, however, comes from the fact that they can be transformed into

their counterparts, 1_1, l_z, 1_3 by the rotation A only when the angular velocity vector

is directed along the geomagnetic field.
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It follows from Equation (2-7) that the unit vectors A l_l_ R2 and A 03 are both orthogonal to

the vector t_A. As the same is true for the unit vectors 82 and 83 by definition, these

two pairs of the mutually orthogonal vectors are related to each other as follows:

A l_lR2 = cos tI) 82 + sin (I) b3 (2-8a)

A

A0 R = -sin_ D2 + cosq_ ]_3 (2-8b)

where the angle _ ranges between 0 and 2zt. Introducing the 3-by-3 orthogonal matrix,

1 0 0 1
T 1 (_) - 0 cos tI) - sin _ (2-9)

0 sin • cos (I)J

Equations (2-8a) and (2-8b) can be represented in the matrix form

A_._U = D___.IT (_) (2-10)

where D and U are 3-by-3 orthogonal matrixes having the vectors 8j and 0j (j = 1, 2, 3),

respectively, as their columns,

Therefore,

-1

A = D T (_)U (2-12)

The angle • has a simple physical meaning; namely, it determines the position of the

transverse angular velocity -o)._). on the ARUC. To prove this assertion, the vector t_A is

written in terms of 81 and 83 using the relation

83 = (g'R81 -- g /Ig l )/>zA (2-13)
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which directly follows from the definition of the vector 83. This leads to the expression

fiA = i_1 (_R81 - &A83) (2-14)

Substitutinl Equation (2-14_ in the right-hand side of Equation (2-1b) and representing
t_A as o91/_1 + to2 82 + w3193 one finds

(2-15)

The vector I_R in the left side of Equation (2-15) is expressed in terms of t_IR, _R by

analogy with Equation (2-14):

(2-16)

Using Equation (2-8b) and comparing the coefficients of the vectors 82, 83 in both sides

of the resulting equation, we get the relation:

f092 + ,_,A = )]'R COS (I), fro3 = _,R sin (2-17)

that uniquely determines the transverse angular velocity t_.L after the angle • is found.

Coupled with Equation (2-12) for the attitude, this relation completes the information that

can be extracted simply from Equations (2-1a), (2-1b), exploiting only two sequential

magnetometer measurements.

3. USE OF THE SECOND DERIVATIVE OF GEOMAGNETIC FIELD WITH
RESPECT TO TIME

In this section, we show how the position of the transverse angular velocity on the ARUC

can be determined by using the second derivative of the geomagnetic field with respect to

time in the case when body-fixed projections of the total torque acting on the spacecraft

are known. To do it we differentiate Equation (2-1b) with respect to time and represent

the resulting relation between second derivatives of the geomagnetic field measured in

body-fixed and reference frames as

A i_ R = i_A +._A X gA + 2 wl x gA _ w_. gA + (01 C2 (3-1)
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where o)a. _ and

C2 -- 21_ x gg+ fil X (_A X gA) (3-2)

To calculate the second derivatives of the geomagnetic field, at least three measurements

are needed: 13), t_2A' I3_. To close the set of equations, it is also necessary to have an

equation for _A. AS explained below, this equation can be easily included in the case of

negligibly small external torques. Otherwise, it explicitly contains the unknown attitude

matrix. The external torques can thus be taken into account only through an iterative

procedure, which is vulnerable to measurement accuracy and may diverge.

For the particular case of constant ang_ar velocity, ((3 A = 0) projecting vector Equa-

tion (3-1) on the plane perpendicular to C2 makes it possible to exclude wa. It is conven-

ient to use the same computation for the general case of nonzero g_A. The final equations

are thus obtained by projecting vector Equation (3-1) on two mutually orthogonal unit
vectors

&z = [(2A + 2R cos _) fiz + 2R sin _fi3l/c(q)) (3-3)

and

_3 - _a x _z =[(2A + 2. cos @) 1_3 - 2R sin @ 62"] /c(@) (3-4)

with

c(q_) = ](2A +2RCOS _)2 +2_,sin 2 (3-5)

(To derive Equation (3-3) from Equation (3-2) we used Equations (2-14) and (2-17) to-
gether with the definition of the vectors D1, D2, I)3 (see Equation (2-3)). Note that there

is no need to consider the equation obtained by projecting Equation (3-1) on the direction

]_A of the magnetic field. In fact, Equation (2-2) shows that the projected equation can be

represented as

gR , ]_R + [_R[2 = gA , ]_A + ]_A[2 (3-6)

Hence, it is equivalent to the first derivative of the equality I3R ° I_R = I3A ° t_A with

respect to time. Therefore, this projection simply describes the change in the parameters
of the ARUC with time.
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To compute the projections of the left-hand side, we first expressed the vectors I32, 153 in

(3-3) and (3-4) in terms of A (_12_, A 1_ from Equations (2-8a) and (2-8b). The final
equations have the form

82(0) - s2(O)= I]_lc(_)_A • _3 + tOl(_)ll_RIc2(_) (3-7a)

83(0) - s3 = -I_lc(O)V • &_ (3-7b)

where

s2(O) =- - 4tO3(0)2A It_RIXR (3-Sa)

s3 -- - 2,CR#I(1- a2)/f (3-Sb)

and

82(0) = 2RA2R- 2AA A + (2AA R- 2RA_) COS O- (2AA3R + 2RA A) sin • (3-9a)

83((i)) = '_'R mR -- _'A AA + ('_,AA_ - ,_,RAA) COS (I) + (,_AA2 R + ,_,RA2A) sinO (3-9b)

with

AA = ]_j . _A, j=2,3 (3-10a)

A R _ I_R , ]_R, j=2,3 (3-10b)

The most important feature of Equations (3-7a), (3-7b) is that they do not contain the

attitude matrix. The derived equations must be solved together with the dynamic equa-

tions of motion which make it possible to express (_A and __)A in terms of torques. The

full set of equations is closed provided that the torques are known.
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3.1 CONSTANT ANGULAR VELOCITY

For constant angular velocity, the right-hand side of Equation (3-7b) vanishes and the

resulting equation is transformed to a quadratic equation:

a0 + 2alx + a2 x2 = 0 (3-11)

by the substitution x = tan (_/2). The coefficients ay (y = 0,1,2) in Equation (3-11) are

defined as follows:

ao - ('_A + 2R)(A R - A }) - S3 (3-12a)

al - 2AA2R + )I,RA A (3-12b)

a2 - (2R - 2A)(A R + A A) - s3 (3-12c)

After calculating two roots Xl and x2 of quadratic Equation (3-11) and substituting the

appropriate values _ = 2 arc tan Xl, (I)2 = 2 arc tan x2, of the angle • in Equation

(2-12), two possible solutions A (_1) and A (_2) for the attitude matrix are found. To

select the correct solution it is necessary to calculate the angular velocity vector _g(_) for

_= _k, (k = 1, 2), using Equation (2-17) for tOE(_k), W3(_k) and Equation (3-7a) for

 ol(ok):

= - (3-13)

Taking into account that ]_A = A (_) _R for any point • on the ARUC (regardless of any

error in data), the loss function is written as

L,,3(tI}k) A-( 0fi l + A+(tI}k)I3RI-]/(2dt) (3-14)

+

where the matrices A-(_k) and A (_k) are obtained by analytical propagation (see

Equation (12-7b) in Reference 8) of the attitude backward (t = -dt) and forward (t = dt) in

time t with constant angular velocity t_g(_D, starting from the matrix A (_k) and assum-

ing an equal time step dt between each sequential measurement. The correct root of

Equation (3-11) is expected to give a smaller value for function (3-14), if all the time

derivatives used in the algorithm are calculated accurately enough.
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3.2 KNOWN INTERNAL TORQUES

Assuming that external torques are negligible, dynamic equations of motion are written as

= LC_A+OA X IOA (3-15)

where I is the moment of inertia tensor and the internal torque lq is a known function

either of time or of the geomagnetic field. Two most important examples are torque-free

rotation (lq = (3) and the B-dot mode (see References 4 and 5). Expressing the compo-

nents of the vector _A as quadratic polynomials of wa(_),oJz(_),_o3(_) from Equa-

tion (3-15) and substituting the resulting expressions in Equation (3-7a) gives the

quadratic equation for wl with coefficients dependent on (I). Each of two roots

o9'1(_) and W"l(_) of this quadratic equation is then substituted in Equation (3-7b), giv-

ing rise to two transcendental equations. After all possible solutions _k of both transcen-

dental equations are found, together with the appropriate vectors wA(_k) and _A(_k),
+

they are tested using loss function (3-14), where the matrices A-(_k) and A (_k) are

obtained by propagating numerically both the attitude and the angular velo'city vector

backward and forward in time, starting from the matrix A (_k) and assuming the vector

_A(_k) to be constant. Again the solution sought is expected to give the smallest value

for loss function (3-14).

4. TESTS OF THE ALGORITHM

Both the algorithm and its software implementation have been tested for the ERBS in the

arbitrarily selected time interval from 890115.000025 to 890115.005937. Geocentric iner-

tial coordinates (GCI) were used as the reference frame. The observed attitude matrices

A were constructed with the same time step of 8 sec as that used in the processed engi-

neering data (low-frequency format) containing both the magnetometer measurements 13A

and the model geomagnetic field t3R in the GCI. The angular velocity NA was calculated

by numerically differentiating the matrix function A (t) with respect to time t.

As the first step, oscillations of the body-fixed components of the angular velocity vector

near its average value of [-0.018, 0.049, -0.034] deg/sec were neglected and propagation

of the attitude matrix was performed analytically, assuming constant angular velocity.

The body-fixed projections of the geomagnetic field were computed by means of Equation

(2-1a), using the analytically calculated attitude matrix and the model geomagnetic field

read with a time step of either 8 or 16 sec.

In Figure 2, we present two solutions of Equation (3-11) as functions of time t. The small

plateau in the upper curve represents, the region where discriminant becomes negative due

to numerical errors in the vectors t3A and 1]R evaluated using the finite-difference ap-

proximation. At these points, the program simply sets the discriminant equal to zero (see

Figure 3) and picks up both solutions from the previous time step. The small spike in the
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curve _2(t) in Figure 2 at approximately 900 sec takes place where the discriminant

illustrated in Figure 3 first touches the abscissa. The values of loss function (3-14) for

each solution are presented in Figure 4. Due to errors in the time derivatives, two curves

cross each other, and as a result, loss function (3-14) can be used to select the correct

solution only in the region where the discriminant of quadratic Equation (3-11) is large.
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Figure 4. Test With Constant Angular Velocity (Step = 16 sec)

The attitude matrix A_ is described here by a (212') sequence of Euler rotations, using

analytical formulae si-milar to Equations (12-21a) through (12-21c) in Reference 8. The

values of the Euler angles determined by means of the developed algorithm are repre-

sented in Figure 5 by solid lines. The dot-dashed lines in Figure 5 represent the expected

values in the limit of an infinitely small time step (the Euler angles were obtained from

the analytically calculated attitude matrix). The agreement is reasonably good, except for

the spikes in the region of significantly negative discriminant. It is worth mentioning that

the small spikes observed in two upper curves in Figure 5 at approximately 900 sec com-

pletely disappeared when the smaller step of 8 sec was used to calculate the time deriva-

tives of the geomagnetic field. This observation is in agreement with our statement that

the observed errors are caused by a relatively large time step used for evaluating these
derivatives.

The solid lines in Figure 6 present the components of the angular velocity vector obtained

by numerically differentiating the attitude matrix derived from the low-frequency teleme-

try data. The dot-dashed straight lines show the average values that were used for propa-

gation of the attitude matrix in the tests discussed above. Despite the fact that

high-frequency oscillations are relatively small, they essentially affect the attitude, as

clearly seen from Figure 7, where the solid lines are the observed values of the Euler

an_les, and the dot-dashed curves are from r_ig,,re 5 The ,,_,,o;"o_- .......... v.,: ..... significance of the
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oscillations can be understood by analyzing behavior of the Euler angles 1 and 2, which

determine the direction of the pitch body-fixed axis in the GCI (cf. Equation (12-20) in

Reference 8). The oscillations simply force this direction to remain unchanged. It is

remarkable that no oscillations are seen in the solid curves in Figure 7, despite the fact

that the oscillations in angular velocity significantly affect the attitude.

In Figure 8, the magnetometer measurements taken from the low-frequency telemetry

data are plotted versus the calculated body-fixed components of the geomagnetic field.

The latter were obtained by rotating the geomagnetic field from the GCI frame to the

body-fixed axes by means of the observed attitude matrix derived from telemetry data.

The agreement looks reasonably good, except for the stepwise behavior of the measured

data due to their analog-to-digital conversion with the increment of -6.44 milligauss (mG).

The coarse digitization of th.e. magnetometer measurements creates an obstacle in calcu-

lating the second derivative 13A of the geomagnetic field. This is illustrated by Figure 9,

where the zigzag lines were obtained by processing the magnetometer measurements and

the dash-dotted lines represent the second derivative of the calculated geomagnetic field

with the same finite-difference scheme and the same time step of 240 sec used in both

cases. The digitization results in relatively large errors of +20-deg in attitude determina-

tion. In Figure 10, we plot the determined Euler angles (solid lines) versus their observed

values (dot-dashed lines) selected at a time step of 240 sec. In Figure 11, for compari-

son, we give a similar plot for the Euler angles which were determined by utilizing the

attitude information in the telemetry data to model a field measurement in the body-fixed

frame and then using this in the algorithm to show the upper limit on accuracy. In

addition to the curves exploiting th_....... time _t_p of 240 sec tsuhu .tte_) to calculate the
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necessary time derivatives, Figure 11 also reproduces the Euler angles determined using

the time step of 120 sec (dotted lines). In the case of the measured geomagnetic field,

use of the large step was necessary to smooth the data. However, it results in some

systematic errors clearly seen in Figure 11. A further decrease in a time step used to

compute the time derivatives of the calculated geomagnetic field results in accumulation

of errors caused by oscillations of angular velocity, which are disregarded in the algo-

rithm. Therefore, the time step of 120 sec turns out to be an optimum compromise,

providing accuracy of -5 deg for each angle.

The observed oscillations of the angular velocity vector significantly affected the ability of

the algorithm to determine its body-fixed components. In Figure 12, the dashed and

dotted lines show the values of these components determined using a time step of

120 sec, and the solid lines show the observed values selected at the same time step. The

total angular rate of 0.062 deg/sec is reasonably well reproduced by the dominant

y-component of the determined angular velocity vector, whereas the two remaining com-

ponents are too small to contribute and are thus in obvious disagreement with the obser-
vations.
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Zigzag lines show the values determined using the developed algorithm; solid lines
show the observed values.

Figure 12. Use of Calculated Geomagnetic Field (Step = 120 sec)

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

The reported preliminary analysis demonstrates that the deterministic approach to coarse

attitude determination, using only magnetometer data, is feasible. A successful
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implementation could benefit significantly from more accurate representation of magne-

tometer measurements in telemetry records than is provided for the ERBS.

Our study of the applicability of the algorithm to attitude determination under normal

conditions is mostly methodological and illustrative. As mentioned in the introduction,

the main objective is to develop an attitude determination system for application under

contingency conditions when only magnetometer data are available. In particular, the

analytical formula derived here for the limiting case of constant angular velocity could be

applied to a spacecraft rotating around its major principal axis after it was stabilized

using nutation damping. At this time, we are studying applicability of the developed

algorithm to a spacecraft in the B-dot mode and to a spacecraft freely rotating with high

angular speeds caused by thruster firing. The errors from neglecting environmental ef-

fects in both cases are now being investigated.
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